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Abstract

A multi-core processor is a single computing component with two or more independent actual processing ele-
ments (called ”cores”), which are able to read and execute program instructions. Nowadays Multi-core processors
are widely used in many application domains, including general-purpose, embedded systems, network, digital signal
processing (DSP), and graphics processing unit (GPU). Task scheduler used for achieving full utilization of system
resource, so obtaining an optimum scheduling is one of the most challenging problems. Task scheduling aimed to
improve system performance by minimizing makespan for tasks and maximizing resource utilization to those tasks,
also increasing the number of cores in a single chip gain performance enhancement in thread level parallelism
(TLP) applications while the instruction level parallelism (ILP) suffer from poor performance. This research paper
proposed an adaptive multicore architecture that support for a dynamic workload consisting of a mix of ILP and
TLP. Offline and online schedulers that dynamically change the number of the cores allocated to an application, is
proposed. The performance evaluation of the adaptive multi-core shows minimizing in makespan and maximizing
resource utilization compared to other lecture multi-core task schedulers.
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1. Introduction

The concept of multicore technology is mainly centered
on the possibility of parallel computing, which can sig-
nificantly boost computer speed and efficiency by in-
cluding two or more central processing units (CPUs) in
a single chip. This reduces the systems heat and power
consumption which meaning much better performance
with less or the same amount of energy. Our proposal
includes a highly accurate dynamically adaptive multi-
core technique which has been proposed as an effective
solution to optimize performance for peak power con-
strained processors[1]. To the best knowledge, the ar-
chitecture of a multicore processor enables communica-
tion between all available cores to ensure that the pro-
cessing tasks are divided and assigned accurately. There
are many types of multi-core architectures, a processor
with asymmetrical cores is one in which the design of
the cores is heterogeneous [2]. Typically this means
that, in relation to one another, each of the cores can
be designed to operate with different instruction sets,
clock speeds, and have differing memory and program-
ming models [Figure 1] [3]. The key benefit of such a
model is that each of the cores is typically specialized
to accomplish a specific type of task, therefore, yielding
improved performance, however, there are a number of
disadvantages associated with this model as well. First,
relatively to processors with asymmetrical cores, devel-
opment of applications is very complex and more diffi-
cult second, due to the specialization of the processors,
one that is underutilized cannot be as easily leveraged to

assist with general processing. A processor with sym-
metrical cores is one in which the design of the cores
is homogeneous [Figure 1] [3]. Unlike processors with
asymmetrical cores, the cores contained in this type of
processor are identical to one another and are intended
to be used for all purposes and types of tasking. The
advantage of these types of processors is that, because
there is only one type of core design, developing ap-
plications for them is easier relative to processors with
asymmetrical cores. Additionally, because the cores are
generalized, the unused processing power of one core
can be more easily applied to accomplish the tasking
of another. Naturally, the one obvious disadvantage of
this model is that, it cannot be optimized to perform a
particular type of task because the cores are designed
for general use [4]. A processor with adaptive cores is
physically fabricated as a set of simple identical cores
[Figure 1]. At runtime, two or more such simple cores
can be coalesced together to create a more complex vir-
tual core. The adaptive cores have the advantages both
asymmetric multi-core and symmetric multi-core. In
fact, the adaptive architecture dynamically creates dif-
ferent asymmetric multicore configurations during the
makespan, in contrast to rigid symmetric and asymmet-
ric solutions [4].

The optimum scheduler should not work in a manner
such that some cores become heavily loaded while other
cores run underutilization.[5][6][7]. To the best of our
knowledge, no previous work characterized the perfor-
mance of an adaptive multi-core architecture when both
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Fig. 1. Multi-core Configurations.

ILP and TLP applications coexist in the system. Our
work introduces one of the first performance enhance-
ment study using adaptive multi-core architecture for
this realistic scenario. In, Instruction Level Parallelism
there are many instructions in code that don't depend
on each other. That means its possible to execute those
instructions in parallel. This type of parallelism can
be found in many applications like graphics, scientific
computing, and cryptography. ILP can be exploited in
the simple cores, but in asymmetric multi-cores (com-
prising of both simple and complex cores), gives bet-
ter performance[8] [9]. On the other hand, multi-cores
exploit Thread Level Parallelism (TLP) by executing
different threads in parallel on different cores[4] [10]
[11]. Symmetric multi-core solutions are the perfect
match for parallel applications that can exploit signif-
icant thread-level parallelism [12]. Indeed the current
trend is to increase the number of cores on the chip to of-
fer more TLP. Adaptive multi-cores appear well poised
to support diverse and dynamic workload consisting of
a mix of ILP and TLP [4][10][11].

In our paper to avoid load imbalance between the cores,
a new model dynamically allocates request based on its
service time and the load status of each core.

Multi-core can operate with the two different type of
tasks, Moldable task and Malleable task. Moldable
tasks are parallel tasks that can be executed using an
arbitrary number of cores, but they cannot change the
core allocation during execution. The performance of
a moldable task is directly related to the number of
allocated cores. Suboptimal solutions for scheduling
moldable tasks have been studied in [13] [14] [15].
However, Malleable tasks are parallel tasks that may
be processed simultaneously by a number of cores,
where the speedup of the task is dependent on the
number of allocated cores. Malleable tasks are allowed
to be preempted in addition to changing the number
of cores during execution. Scheduling malleable tasks

is a promising technique for gaining computational
speedup when solving large scheduling problems on
parallel and distributed computers. Malleable tasks real
applications include simulating molecular dynamics,
Cholesky factorization, operational oceanography
and quay allocation[16]. In our work, we model the
applications as independent preemptive malleable tasks.

lectures address the problem of getting optimal task
allocation to the cores as a critical goal so, one of the
biggest issues in such systems is the development of
effective techniques for the distribution of the Cores.
The problem is how to distribute (or schedule) the
cores to achieve some performance goal(s), such as
minimizing execution time, minimizing communication
delays, and/or maximizing resource utilization [17].
From a system’s point of view, this distribution choice
becomes a resource management problem and should
be considered as an important factor during the design
phases of multicores system. Task scheduling can be
divided into static, dynamic and adaptive scheduling. In
static scheduling, the assignment of tasks to processors
is done before program execution begins. On the other
hand, dynamic scheduling is based on the redistribution
of processes among the processors during execution
[17]. An adaptive scheduler is the one which takes
many parameters into consideration in making its
decisions [18][19]. Our proposed is concerned with the
efficient utilization of all the cores and resources for this
purpose we need an efficient adaptive task scheduling
technique.

Let us explain succinctly, our contribution is aiming
to characterize the true performance possibility of an
adaptive multi-core architecture. We utilize an optimal
schedule that can smart reconfigure and allocate the
cores to the tasks so as to minimize the makespan and
maximize resource utilization and get load balance to
tasks (ILP and TLP). Two different settings problem are
considered (offline and online) adaptive task schedulers.

The rest of the paper is organized as follows. Section
2, presents literature review. In Section 3, the system
model is presented, where some relevant background
and necessary concepts for the proposed algorithm are
demonstrated. Section 4, introduces an optimal sched-
ule (Offline, and Online) using adaptive multi-core ar-
chitecture. Section 5. shows the results of the quantita-
tive evaluation review and final conclusion is introduced
in Section 6.

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 
ISSN 2229-5518  

1830

IJSER © 2018 
http://www.ijser.org 

IJSER



ARMSS: Adaptive Reconfigurable Multi-core Scheduling System

2. Literature Review

A lot of adaptive multi-core architectures were sug-
gested in the article recently. Core Fusion [20] fuses
homogeneous cores that used complex hardware mech-
anism. They evaluate the performance by running ILP
tasks and TLP tasks separately on the adaptive multi-
core.Voltron exploits various forms of parallelism by
conjugation cores that together work as a VLIW pro-
cessor [21]. It depends on a very complex compiler
that must reveal all forms of parallelism found in ILP
task. The evaluation is performed with only ILP tasks
and configuring the hardware to exploit different types
of parallelism in the application. Federation [22] shows
an alternative solution where two scalar cores are coali-
tion into a 2-way out-of-order (ooo) core. Again they
evaluate the performance by running only ILP tasks. An
analytic study is presented where Amdahl’s law [23] is
acclimatized to different types of multi-core architec-
tures. The study uses simplistic architecture and appli-
cation forms. In case of an application comprising ILP
task, the results show that asymmetric multi-cores can
offer possibility speedups higher than symmetric solu-
tions, while adaptive multi-cores are the best option, be-
ing able to offer speedups even higher than the asym-
metric architectures.
Preemptable Malleable Task Scheduling Problem was
introduced in [24]. The issue of optimal scheduling n
independent malleable tasks in a parallel core system
was studied. It is assumed that the execution of any task
can be preempted and the number of cores allocated to
the same task can be changed during its execution. The
research presented a rectangle packing algorithm, which
converts an optimal solution for the relaxed problem, in
which the number of cores allocated to a task is not re-
quired to be an integer, into an optimal solution for the
original issue in on time.
Task Scheduling on Adaptive Multi-Core[4] was pre-
sented, It employed the algorithm that allocates and
schedules the tasks on varying number of cores by
using adaptive multicore, called Bahurupi. Bahu-
rupi can achieve the performance of complex ooo su-
perscalar processor without paying the price of com-
plex hardware. Bahurupi, in contrast, is a hardware-
software cooperative solution that demands minimal
changes to both hardware and software[25]. In To-
wards a Dynamic and Reconfigurable Multicore Het-
erogeneous System[26] was used a complex hardware
to implement a dynamic scheduler. It can be used
to allocate threads with low ILP on smaller cores
and threads with high ILP on bigger ones. In An
Adaptive and Hierarchical Task Scheduling Scheme for
Multi-core Clusters[27] and Adaptive Workload-Aware
Task Scheduling for Single-ISA Asymmetric Multicore
Architectures[28] were used Adaptive task scheduling
in multi-cores to improve time and speed up but they
did not take into their account the system utilization.

However, in Adaptive thermal-aware task scheduling for
multi-core systems[29] managed on-line adaptive task
scheduling to improve system utilization.
Scheduling Algorithms for Asymmetric Multi-core
Processors[30] was tried taxonomies of scheduling al-
gorithms for asymmetric multicore architecture. It has
been discussed some representative algorithms. Some
scheduling algorithms target efficiency, while other al-
gorithms target thread level parallelism or both. Ef-
ficiency specialization algorithms try to get better uti-
lization and performance by assigning CPU intensive
threads to powerful cores. Also TLP specialized spe-
cialization algorithms assign sequential applications and
sequential phase of the parallel application to powerful
cores.

3. System Model

The problem of Multi-core scheduling on adaptive mul-
ticore architectures[Figure 3] has been considered as an
NP-hard problem. Today, computer architects use cycle-
level simulators to discover and analyze new multi-core
designs. In this section, we first present multi2sim sim-
ulator. Second introduces our system models, and then
we introduce some pertinent background information
and concepts necessary for our research.

3.1. The Multi2Sim Simulation Frame-
work

The research on computer architecture simulator is very
important because simulator serves as an important
tool for developing computer system architectures and
software. Simulation works by modeling the behavior
of a real system. Because these systems are usually
complex, simulation models key aspects of the system
and make a few assumptions about the details. This
section describes the Multi2Sim simulator and its
model of the x86 superscalar architecture. Multi2Sim
is a simulation framework for CPU-GPU(Central
processing unit - Graphics processing unit) heteroge-
neous computing. It includes models for superscalar,
multithreaded, and multi-core CPUs, as well as GPU
architectures. Multi2Sim is an open-source simulator
that used C programming language. It can be down-
loaded from web site [38], a lot of modifications were
performed in Multi2sim so that it could be used in our
evaluation[31][32].

The Multi2Sim simulation paradigm is described in
[Figure 2]. Three distinct modules comprise the simu-
lator: the disassembler, the emulator (or functional sim-
ulator) and the timing simulator (or detailed simulator).
In essence, the disassembler is responsible for reading
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Fig. 2. Multi2Sim simulation framework.

bit streams and interpreting them as machine instruc-
tions. the emulator models instruction behavior from
an input/output point of view and finally, the simula-
tor models the flow of instructions inside the machine
as they execute. The entire simulation framework was
modularly designed, such that each module in [Figure
2] requires all modules to the left in order to work (the
emulator requires the disassembler, and the simulator
requires the emulator). When programs execute on the
timing simulator, it requests the functional simulator to
execute an instruction. The functional simulator reads
the program binary (if necessary) and passes the instruc-
tion bytes to the disassembler, which returns the instruc-
tion fields. The functional simulator executes the in-
structions and passes execution information to the tim-
ing simulator.

3.2. System Model in The Multi2Sim

Our model has 8 Identical cores consisting of 2-way out-
of-order(ooo) cores [Figure 3]. Two clusters have been
created from those cores (cluster#1 ) and (cluster#2),
where cluster#1 is consisting 4 Identical cores (C1−C4)
with one thread each and cluster#2 is consisting of 2
Identical cores (C1−C2) with one thread each. Cores
in any cluster can be coalesced together to form 4-way,
6-way, or 8-way ooo and created a complex core. For
example, a 2-cores coalition work operates a 4-way ooo
cores, while a 3-cores coalition operates like a 6-way
ooo cores and 4-core coalition operates like an 8-way
ooo cores. That coalition could be found in the same
cluster. Finally, there are two cores not belong to any
cluster.

Fig. 3. Adaptive multi-core architecture with 8 cores.

The adaptive architecture [Figure 3] allows both ILP
and TLP tasks to use the timevarying number of cores.
Thus, it modeled the applications as malleable workload
[33], where the number of cores allocated per task is not
fixed and can change during execution through preemp-
tion. For the limit study, our goal is to create the optimal
schedule for the malleable tasks on the adaptive archi-
tecture. We used n tasks mixed from the two main types
of Task (TLP and ILP), those tasks are running on m
cores (where n < = m). The number of cores assigned
to each task can be increased according to its utilization
time. The utilization of each task was a very important
parameter to be calculated during the algorithm running.

We should calculate the Utilization per core. Bini
et al. [34] showed that the N tasks will be scheduled
on a single-core platform under the following condition:

N∏
i=1

(Ui + 1) <= 2 (1)

this calculation determines the possibility of running
two tasks on the same core or not.

Also, we need to calculate each cluster utilization
U(c) that must satisfy Liu and Layland boundary [35].

U(c) <= 1 (2)

Our work introduces a study of adaptive reconfigurable
multi-core scheduling architecture when both ILP and
TLP tasks coexist in the system.

4. Adaptive Reconfigurable Multi-core
Scheduling System [ARMSS]

We have been designed an efficient offline and online
scheduler using adaptive multi-core architectures. We
present an optimal scheduler for a realistic adaptive
multi-core architecture. We impose some constraints
that help in performing real time task scheduling on
adaptive multi-core. our proposed algorithms study both
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types of scheduler (offline and online). Each algorithm
divides tasks that run on the same cluster into high
utilization task set (T uh) and low utilization task set
(T ul). When a task belongs to T ul finished excitation
on one core then a task belongs to T uh could be used
that last core and increased its cores by one. That sce-
nario should be executed between cores within the same
cluster only. The maximum number of cores to run one
task equal the number of that cluster’s cores.

4.1. OFF-Line Adaptive Reconfigurable
Multi-core Scheduling System
[offline- ARMSS]

When scheduling tasks on a system model, we must
take into consideration all the constraints and limita-
tions imposed by the system. More concretely, for our
proposed algorithm (ARMSS), we need to consider
the following constraints in forming core coalitions for
ILP tasks. Those constraints are actually quite generic
and are present for almost all adaptive multi-core
architectures in the literature even though the exact
values for the constraints can be different.
c1) In case of ILP tasks, the difference between the two
selected tasks utilization from T uh(High Utilization
Task set) and T ul(Low Utilization Task set) must be
more than 0.1
c2) The same core can run a different type of tasks
(TLP and ILP).
c3) ILP task can only use cores that belong to the same
cluster
c4) ILP tasks can use at most four cores (Cluster)

ARMSS aimed to achieve max utilization with coalesc-
ing between task has low utilization (TLP) and the task
has high utilization (ILP).
ARMSS started by making an initialization for the sys-
tem parameters, in which it is determining the number
of tasks (n) and number of cores (m), where n <= m
Those n-independent real-time tasks seeking execution
is denoted by Γ = {τ1, τ2, ..., τn}, considering that this
task set will be executed on m-identical cores, denoted
by C = {C1, C2, . . . , Cm}, with total utilization U and
individual utilization Ui those tasks can be of any type
TLP or ILP.
Algorithm 1 was trying to get optimization allocation of
tasks with different utilization in order to achieve mini-
mum task makespening.
The algorithm begins by loading number of tasks, a
number of cores, and clusters, tasks utilization array,
and tasks type. Then the algorithm calls Adaptive uti-
lization scheduler function. This function distinguished
tasks having low utilization T ul form tasks having high
utilization T uh after allocating them to cores. After
that, the algorithm checks the four constraints and used

the check results for reallocating the task to cores and
clusters. [Figure 4] explains ARMSS. Tasks informa-
tion is given in [Table 1].

According to constraint number c1, algorithm 1 divides
the given task set into two groups, high utilization task
set (T uhi)= T uh1, ...T uhk and low utilization task set
(T ulj)= T ul1, ...T ulw. Then it collects tasks from the
two groups that satisfy eq. [1 and 2] and at the same
time achieved the condition (T uhi - T ulj )> 0.1, where
i ranged from 1 to k and j ranged from 1 to w. The algo-
rithm trying to increase the number of cores assigned to
each task belongs to a high utilization task set group in
order to decrease its running time, line 8 to 11 see [Fig-
ure 4b] and [Table 1] where T6[ belong to T uhi] and
T5[belong to T ulj].

According to constraint number c2, the algorithm trying
to find another core to run part of a task that has high uti-
lization T uhi (T6). That core actually runs another task
has low utilization T ulj. (T uhi and T ulj) that are col-
lected together must belong to different type (TLP, ILP),
line 11. See [Figure 4c] and [Table 1] where T6[T uhi]
was chosen to run part of it on the core that runs task T5
[T ulj].

According to constraint number c3, the algorithm
should collect tasks [T uhi and T ulj] be running in the
same cluster, [Figure 4d]. If T uhi don’t blow to any
cluster then collecting T uhi+T ulj to a new cluster that
satisfies equation[2], line 12 to 30, see [ Figure 4d] and
[Table 1] where T7[T uhi] collect with T4[T ulj].

According to constraint number c4, a maximum number
of cores can assign to task equal four cores because of
our model maximum cores per cluster equal four. Af-
ter increasing number of cores assigned to any task, it
should recalculate new utilization using equation [3] to
this task and update the utilization Array[].

After determining task pair that ensure all the above
constraints, the algorithm will increase T uhi’s task run-
ning core by one core, see [ Figure 4d] the algorithm
increase number of cores running task T7 to two cores,
and task T6 to three cores.

The final result after applying ARMSS algorithm on
tasks [T1 .. T8] [Table 1], is shown in [Table 2] where
T6, T5, T3, and T8 were running on the same cluster#1.
T7 and T4 were running in the same cluster#2.
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Table 1. Example of real Tasks

Tasks Utilization Type
T1 .7 TLP
T2 .7 TLP
T3 .7 TLP
T4 .6 TLP
T5 .6 TLP
T6 1 ILP
T7 .94 ILP
T8 .78 ILP

Table 2. Final result after apply ARMSS

Tasks Utilization Type Number
of
cores

Cluster

T1 .7 TLP 1 0
T2 .7 TLP 1 0
T3 .77 TLP 1 Cluster#1
T4 .77 TLP 1 Cluster#2
T5 .75 TLP 1 Cluster#1
T6 .75 ILP 3 Cluster#1
T7 .75 ILP 2 Cluster#2
T8 .78 ILP 1 Cluster#1

(a)

(b)

(c)

(d)

Fig. 4. After Apply ARSSM Offline
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ALGORITHM 1: Offline ARMSS Algorithm

1 initialization;
2 AdaptiveOffline Scheduler

(Taskslist,m, n, typeoftasks,Arrayu[]) begin
3 n<=m // Types of tasks (TLP, ILP)
4 free cluster = m/4
5 assign tasks to cores - first in first allocated
6 end
7 AdaptiveUtilizationScheduler() begin
8 Updated used cluster
9 Updated Array u[]

10 Find T uhi & T ulj // high & low utilization
11 if T uhi − T ulj > .01 then
12 while (T uhi+T ulj)/2 < 1 // Liu and Layland

boundary do
13 if T uhi and T ulj not the same type then
14 if T uh has a number of cores > 1 // T uhi

Belongs to a cluster then
15 Find utilization to which has T uhi

after Adding T uhi + T ulj
16 if Ucluster < 1 then
17 T uhi & T ulj, in the same cluster

and increase T uhi’s cores by one
core

18 end
19 else
20 Break
21 end
22 end
23 else
24 Find cluster utilization after Adding

T uhi + T ulj
25 if cluster utilization < 1 then
26 T uhi & T ulj in the same cluster

and increase T uhi’s cores by one
core

27 end
28 else
29 Break
30 end
31 end
32 end
33 else
34 Find next T uhi with different type
35 end
36 end
37 end
38 else
39 Break
40 end
41 end

4.2. ON-Line Adaptive Reconfigurable
Multi-core Scheduling System [online
ARMSS]

In Online ARMS Algorithm we do not have any in-
formation about tasks utilization or type. Initialization
of Online ARMSS Algorithm includes determining the

number of free cores, and free clusters, line 1 to 6. Func-
tion OnlineScheduler queue(), first give maximum pri-
ority to the task in front of task queue. It assigns that
task to the free core if found. This function also updates
free cores and used cores lists after each task terminate,
line 8 to 16. Second, the function calculates each task
utilization, line 19 to 21. If free core found, algorithm
2 increase number of core assigned to the task has max-
imum utilization by that core. This can be done under
constraining that the free core and high utilization task,
previous running core(s) belong to the same cluster line
22 to 30. The algorithm tries to speed up the calculation
time of tasks that have high utilization. That is done
by increasing number of cores running those tasks with
the aid of free cores if found. If there isn’t free core,
then the algorithm searching for high and low utiliza-
tion tasks run on the same cluster. Then let the core
which assigns to the task has low utilization run part of
the high utilization task. This will increase the number
of core assign to high utilization task by one core. The
above processes can’t be done unless eq.1 and 2 are not
satisfied, line 31 to 43.
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ALGORITHM 2: Online ARMSS Algorithm

1 initialization;
2 InitAdpativeonlineSchedur (m,n) begin
3 Free cores=m
4 Free cluster = m/4
5 Updated free cores (m, used cores )
6 end
7 OnlineScheduler queueu() begin
8 if task queue.empty() ==FALASE then
9 if free cores > 0 then

10 Next task =teask.queue.foront()
11 Pace task(next task)
12 end
13 if any current task is finished then
14 Updated used cores
15 Updated free cores (m, used cores )
16 end
17 end
18 else
19 // calculate utilization to all Tasks
20 for all task n do
21 Array u[]=utilization per task
22 end
23 if free cores > 0 then
24 Find T uhi from Array u[] //high utilization
25 if T uhi and free cores in the same cluster then
26 Increase T uhi’s cores by one core
27 end
28 else
29 Find task with max utilization in the

(T uhi), cluster which has free cores
30 Increase task (T uhi) ’s cores by one core
31 end
32 end
33 else
34 Find T uhi & T ulj from Array u[] // high and

low utilization
35 while (T uhi+T ulj)/2 < 1 // Liu and Layland

boundary do
36 if T uhi and T ulj in the same cluster then
37 Increase T uh’s cores by one core
38 end
39 else
40 Find in T ulj cluster a task with which

max utilization(T uhi)
41 Increase T uhi’s cores by one core
42 end
43 Find next T uhi from Array u[]
44 end
45 end
46 end
47 Updated Array u[], Updated free cores (m, used cores )
48 end

5. Results

In this section, we first present the quantitative charac-
terization of our algorithm ARMSS’s performance (of-
fline and online). Comparing between different types

of Multi-core Task scheduler (static scheduling, dy-
namic scheduling, adaptive scheduling (asymmetric,
symmetric) and Bahurupi ) and our proposed algorithm
[ARMSS].

Table 3. Benchmark applications used in our study.

Type Suite Inputs Benchmarks

ILP

SPEC2006

nput.program bzip
capture.tst gobmk
hyperviscoplastic.inpcalculix
retro.hmm hmm
test.txt sjeng
lbm.in lbm
an4.ctl sphinx
inp.in mcf

SPEC2000 mesa.ppm mesa
crafty.in crafty

MiBench runme large.sh

basicmath
bicount
qsort
susan

dijkstra
patricia

sha
adpcm

fft
gsm

stringsearch

TLP PARSEC simsmall

blackscholes
swaptions
canneal

vips
bodytrack

5.1. Workload

Tasks chosen in our study contain 21 ILP applica-
tions and 5 TLP applications. ILP applications were
taken from ( SPEC2006, SPEC2000 [37] and embed-
ded MiBench benchmark suites [36] ). TLP applications
were taken from PARSEC benchmark suite [39] [40].

The characteristics of the benchmarks appear in Table
[3]. We generate different workload (task sets) consist-
ing of varying mix of ILP and TLP tasks. Across all
the tasks sets, the ratio of ILP tasks ranges from 35% to
85%, so the ratio of TLP tasks ranges from 15% to 65%.

5.2. Multi-Core Task Scheduler

Multi2Sim introduces the concept of task scheduling
similar to the idea of process scheduling in an operating
system. The schedule is aimed for mapping software
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tasks to processing nodes (hardware threads). There are
two types of task scheduling in Multi2Sim The Static
Scheduler and The Dynamic Scheduler [38].

5.2.1. The Static Scheduler in Multi2Sim

First assigns tasks to threads within a single core and
then goes to the next core after one fills up. application
using the parallel code, (first threads, then cores). Con-
text switches are not allowed. A running context holds
the allocated hardware the first thread until the simula-
tion ends.

5.2.2. The Dynamic Scheduler in Multi2Sim

Mapping of initial contexts at startup does not differ
from the static scheduler. However, these allocations are
not definitive, and they can vary at runtime. If an allo-
cated context exceeds this quantum, and there is any un-
allocated context waiting for execution. context stores
the processing node identifier of its last allocation, it
tries to return to the same processing node where it was
run for the last time if it is available. New spawned con-
texts try to find a processing node that has not been used
before by any suspended or evicted context so that any
unallocated context waiting for execution can allocate
the released processing node again.

5.2.3. The Adaptive Scheduler in Multi2Sim

We introduce another type of task scheduler in
Multi2Sim called an Adaptive Scheduler like a Dy-
namic Scheduler in initialization but different in
ContextQuantum value where ContextQuantum= Con-
textQuantum/FreeNodes and Maximum FreeNodes =
AllNode/2. Finally, if task exceeds ContextQuantum
and there is any unallocated task waiting for execution
increase tasks cores by one core. See [Figure 5] where

Fig. 5. Multi-Core task scheduler in multi2sin

The Adaptive Scheduler achieves minimum makespan

compared to Static Scheduler and Dynamic Scheduler.
Our study used Adaptive Scheduler asymmetric and
symmetric Multicore configurations, Table 4. Re-
views different multi-core configurations used in this
study[25].

Table 4. Multi-core configurations used in our study.

Configuration Description
(S1) 8x2-way Symmetric eight 2-

way cores
(A1) 2x4-way + 4x2-way Asymmetric two 4-

way + four 2-way
cores

(Bahurupi) 8x2-way Bahurupi Adaptive
multi-core

5.3. Speedup Functions

Speedup is categorized in computer architecture a pro-
cess for increasing the performance between two sys-
tems processing the same problem. More technically,
it is the improvement in speed of execution of a task
executed on two similar architectures with different re-
sources. The notion of speedup was established by Am-
dahl’s law, which was particularly focused on parallel
processing. However, speedup can be used more gen-
erally to show the effect on performance after any re-
source enhancement. We compile the parallel task with
r threads and execute the threads on r cores to obtain
the speedup. In other words, the speedup function rep-
resents the ideal scenario where the number of threads
is equal to the number of cores. In reality, a parallel
task compiled with r threads may need to use a differ-
ent number of cores during execution. Similarly, for an
adaptive architecture, a task can be allocated a varying
number of cores during execution. However, we no-
ticed little difference in performance when an applica-
tion compiled with m threads executed on r cores where
r<m. We use speedup obtained from core coalition.
As going beyond 8-way cores does not provide further
speedup due to limited ILP, we restrict the speedup func-
tion for serial tasks to the 8-way core.

We compute the average speedup of the task across all
the online-ARMSS schedules in which the task partic-
ipates. The speedup is computed w.r.t. the execution
time of the task on a single 2way core. [Figure 6] shows
the speedup for the ILP Tasks. Offline-ARMSS is the
clear winner here and provides the best speedup for
each application among all the multi-core task sched-
uler. Dynamic-Multi2Sim deploys 2-way cores and
hence has better speedup for serial tasks compared to
Adaptive-Multi2Sim (S1) using 2-way cores. Adaptive-
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Multi2Sim (A1) gives modulate performance. Bahu-
rupi offline simulator gives performance higher than
Adaptive-Multi2Sim but lower than ARMSS for serial
tasks.
The speedup TLP tasks are close to Adaptive-
Multi2Sim(S1), that is because S1 has a large number
of simple and identical cores. While Static-Multi2Sim
and Dynamic-Multi2Sim perform quite badly for paral-
lel applications see [Figure 7].

5.4. Makespan

Makespan is the time when all tasks have been
completed execution. ARMSS has given Minimum
Makespan Scheduling comper to other task sched-
ulers (Static scheduling, Dynamic scheduling, Adap-
tive scheduling (S1, A1) and Bahurupi). For this re-
search, we have chosen a set of five benchmarks: three
sequential applications (gobmk, bicount and fft) from
SPEC and MiBench benchmark suites that can exploit
ILP through complex ooo cores, and two parallel ap-
plications (bodytrack and blackscholes) from PARSEC
benchmark suite [37] that can exploit TLP through mul-
tiple simple cores. The result shows that ARMSS took
375 Cycles (x 1MIL) while in Bahurupi took 400 Cycles
(x 1MIL) so, ARMSS gives Minimum Makespan.

5.5.

 

Processor

 

Utilization

CPU utilization refers to a computer’s usage of pro-
cessing resources or the amount of work handled by a
CPU. Actual CPU utilization varies depending on the
amount and type of computing tasks. Certain tasks re-
quire heavy CPU time, while others require less because
of non-CPU resource requirements. In another word
CPU utilization is the proportion of the total available
processor cycles that are consumed by each process.
Figure[8], reports the processor utilization (averaged
across all tasks sets) for different architectures schedul-
ing offline. The results show that the Offline-ARMSS
has the best utilization (95%) and performance which,
making it the most efficient architectures. In contrast,
Bahurupi has a next higher utilization (92%) but low
performance, making it the least efficient multi-core ar-
chitecture. Static-Multi2Sim has low utilization (43%)
and Dynamic-Multi2Sim also has low utilization (50%)
as it can only exploit TLP from parallel tasks. The serial
tasks keep only a subset of the cores busy. Adaptive-
Multi2Sim(S1) has good utilization (72%) making it
more efficient than Adaptive-Multi2Sim(A1).

In Figure[9], Online-ARMSS shows very good effi-
ciency with (81%) average utilization, while Bahurupi 
simulator shows the next beast efficiency with (76%) av-
erage utilization. Similarly, Static-Multi2Sim shows the 
lowest utilization (33%) due to the large number of sim-

ple cores that can only benefit the parallel applications,
whereas the serial applications keep the occupied cores
busy for a long time. The measured average competi-
tive ratio between our online scheduler and an optimal
online scheduler (obtained using strip packing) is 1.14.

5.6. Harmonize ILP and TLP

ARMSS Task Scheduler is successful in accelerating
both ILP and TLP tasks. While symmetric architecture
with a large number of simple cores is quite effective for
TLP, it shows poor performance for serial tasks. Asym-
metric architecture can perform well for ILP tasks due
to the presence of a complex core but performs badly
for TLP tasks. Among the static asymmetric configu-
rations, the configuration asymmetric provides the best
balance of ILP and TLP speedup, but is far behind adap-
tive multi-core architecture ARMSS.

Fig.

 

6.

 

Speedup

 

of

 

ILP

 

tasks

 

averaged

 

across

 

all

 

task

 

sets

 

and

 

normalized

 

w.r.t.

 

execution

 

on

 

a

 

native

 

2-way

 

core.

Fig. 7. Speedup of TLP tasks averaged across all task 
sets and normalized w.r.t. execution on one 2-way core
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Fig. 8. Utilization of architectures in the offline schedule

Fig. 9. Utilization of architectures in the online sched-
ule.

6. Conclusions

We have presented a comprehensive quantitative ap-
proach to enhance the performance potential of adap-
tive multi-core architectures compared to static symmet-
ric and asymmetric multi-cores. Scheduling Algorithm
Optimization Criteria are measured by maximum uti-
lization, maximum throughput and minimum makespan
time. We employ an optimal algorithm that allocates
and schedules the tasks on varying number of cores so
as to achieve those criteria. Our study considers a mix
of sequential and parallel workloads to observe the ca-
pability of adaptive multi-cores in exploiting both ILP
and TLP. our research proposed an adaptive multicore
architecture (ARMSS). This architecture supports for a
dynamic workload consisting of a mix of ILP and TLP
applications. two studying cases (offline and online) are
considered. In both cases, ARMSS scheduler changes
the numbers of cores allocated to each task dynami-
cally taking into consideration that task utilization and
the processor load. ARMSS’s utilization is the highest
where it achieved 95% in Offline and 82% in Online.
The other Task schedule (Adaptive-Multi2Sim(A1),
(Adaptive-Multi2Sim(S1), Bahurupi Static-Multi2Sim,
Dynamic-Multi2Sim) achieved less result. The results
show that ARSMM (online, and offline) achieve max-
imum throughput, speedup, utilization, and minimum
makespane comparing to the other lecture scheduling al-
gorithms.
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